Rad-by-rad (bit-by-bit): triumph of evidence over activities fostering fear of radiogenic cancers at low doses.
نویسندگان
چکیده
Large segments of Western populations hold sciences in low esteem. This trend became particularly pervasive in the field of radiation sciences in recent decades. The resulting lack of knowledge, easily filled with fear that feeds on itself, makes people susceptible to prevailing dogmas. Decades-long moratorium on nuclear power in the US, resentment of "anything nuclear", and delay/refusal to obtain medical radiation procedures are some of the societal consequences. The problem has been exacerbated by promulgation of the linear-no-threshold (LNT) dose response model by advisory bodies such as the ICRP, NCRP and others. This model assumes no safe level of radiation and implies that response is the same per unit dose regardless of the total dose. The most recent (June 2005) report from the National Research Council, BEIR VII (Biological Effects of Ionizing Radiation) continues this approach and quantifies potential cancer risks at low doses by linear extrapolation of risk values obtained from epidemiological observations of populations exposed to high doses, 0.2 Sv to 3 Sv. It minimizes the significance of a lack of evidence for adverse effects in populations exposed to low doses, and discounts documented beneficial effects of low dose exposures on the human immune system. The LNT doctrine is in direct conflict with current findings of radiobiology and important features of modern radiation oncology. Fortunately, these aspects are addressed in-depth in another major report-issued jointly in March 2005 by two French Academies, of Sciences and of Medicine. The latter report is much less publicized, and thus it is a responsibility of radiation professionals, physicists, nuclear engineers, and physicians to become familiar with its content and relevant studies, and to widely disseminate this information. To counteract biased media, we need to be creative in developing means of sharing good news about radiation with co-workers, patients, and the general public.
منابع مشابه
Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملModified 32-Bit Shift-Add Multiplier Design for Low Power Application
Multiplication is a basic operation in any signal processing application. Multiplication is the most important one among the four arithmetic operations like addition, subtraction, and division. Multipliers are usually hardware intensive, and the main parameters of concern are high speed, low cost, and less VLSI area. The propagation time and power consumption in the multiplier are always high. ...
متن کاملBit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)
In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...
متن کاملNovel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
متن کاملOptimum Drill Bit Selection by Using Bit Images and Mathematical Investigation
This study is designed to consider the two important yet often neglected factors, which are factory recommendation and bit features, in optimum bit selection. Image processing techniques have been used to consider the bit features. A mathematical equation, which is derived from a neural network model, is used for drill bit selection to obtain the bit’s maximum penetration rate that corresponds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dose-response : a publication of International Hormesis Society
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2007